
Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 1

Basic Lessons in Writing Scripts for Blitzkrieg 1
by hitandrun, June 2006

Debugging notes by BKP

Special thanks to Wespex and those who proof-read and made
suggestions.

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 2

Introduction

When the game Blitzkrieg was released, the Map and Resource Editors were bonus features
packaged with the game. The Help Files for the editors were limited and there were absolutely
no instructions for writing the code (script) which would control events in custom missions.
Working out how to get the most out of the editors was a cumulative process conducted by
players sharing their discoveries on various forums. Unpicking the script language, Lua, was
similarly achieved by good code breaking, trial and error and a lot of very open sharing of
discoveries. The num erous individuals w ho took on the task of “cracking” Lua have m ade
custom map creation a much easier prospect for all of us who follow. While those pioneers are
not always active in BK anymore, everyone who plays custom maps or tries to make them owes
their ability to do so to a lot of hard work by some determined code busters who were generous
enough to share their discoveries with the rest of the BK community.

O ne of the m ost im portant things to com e out of the code busting w as Calvin’s Blitzkrieg Guide
to Programming Lua Functions. This made available to everyone a list of the script calls used in
BK with a guide to how they are used. As this is a ”must have” for anyone
writing BK scripts IT SHOULD BE downloaded. The Guide is like a dictionary of Lua but it does not
provide easy instructions for how the terms are combined into a working script (Calvin includes
an exam ple but it could hardly be described as “introductory” and is best skipped over by
anyone new to scriptwriting). Calvin’s Blitzkrieg Guide to Programming Lua Functions can be
downloaded from Blitzkrieg Portal

Wespex was the first to produce an integrated tutorial for making a map, writing the script and
creating a “w rapped up” gam e w hich could be shared w ith other players. That tutorial
(republished several tim es and finally in com bination w ith Calvin’s Guide) is the prim ary
introduction for anyone wanting to make custom maps. Following publication of the tutorial,
Wespex provided a very comprehensive series of answers to scripting questions on BKP Forum.
The most valuable characteristic of both the Tutorial and the Answers was the comprehensive
notes provided in the script examples which not only provided a ready-made fix but explained
how and why the script worked. It is probably fair to say that the vast majority of people
currently writing scripts learnt by following the Tutorial.

These Basic Lessons have been written in response to a number of comments on the Blitzkrieg
Portal forums and the continuing difficulties apparently experienced by many mapmakers when
they try to start writing scripts. The Basic Lessons attempt to demonstrate the simplest
principles of Lua and then show how to build up a script to a point which could easily provide
the basis for a custom game. It will attempt to do this while demystifying some technical terms.

http://bkportal.com/default.asp?Download=2

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 3

Points to Consider

As someone who has only recently started writing Lua I am very familiar with what a big hurdle
getting started is and how frustrating it is w hen scripts don’t w ork. However, there are some
points to bear in mind:

 Lua is a language and you must learn what the words mean and how to use them from
scratch. Just because you are very clever doesn’t m ean you should expect to be able to
write Lua without doing some hard work to learn the vocabulary and grammar

 Unlike human languages, if you make a tiny mistake in Lua then you will be completely

unintelligible. Most frustration when starting to write Lua comes from scripts which
“just don’t w ork”. Alm ost inevitably it’s your fault! The natural reaction is to say “the
program doesn’t w ork” or “there’s a problem w ith m y com puter” but 999/1000 tim es
you have made a typing error or made a grammar mistake.

 Making your own map and seeing your own script run is great fun; getting the script to

run isn’t alw ays fun. The very best scriptw riters in the BK com m unity all adm it that they
still spend a lot of frustrating time fixing their own creations. Not everyone will have the
patience to go through there scripts line by line looking for one letter out of place, one
bracket missing or one extra semicolon. If you want to make scripts you have to accept
that that is what is involved and no one else can make it any easier for you.

 Once you have cracked the basics of Lua, the best way to learn is to open up a mission

by a m apm aker you like and go through the script line by line (w ith a copy of Calvin’s
Guide at your side) working out what is going on.

 If you w ant to try som ething new , or use som ething you have “borrow ed” from another

scriptw riter, don’t try it in the m iddle of you pride-and-joy 26x26 map. Make a test map
4x4 with only the minimum number of units and try out the individual block of script
w hich is new for you. That w ay if it doesn’t w ork you can spot it quickly and not have to
check a lot of other, unrelated stuff to see if it is running interference. This is the
method used in the lessons which follow.

 If you are really stuck (after going through BKP’s Debugging Notes accompanying these

lessons) then search the Forum, most problems have been addressed before. If you
can’t find w hat you are looking for then post a question under Map Making Questions
and Answers. If the question is specific (perhaps copy and paste a bit of the script) then
you are likely to find you get a quick and helpful reply from one of the gods of
scriptwriting who so generously help out us mere mortals.

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 4

How the Basic Lessons Work

The following Lessons each refer to the map (.bzm) and script (.lua) file of the same name that
are included in the archive with this document. All the .bzm and .lua files should be copied and
pasted into the Blitzkrieg\Run\Data\Maps folder on your computer; this is also where you will
need to save your own custom maps and scripts. For each lesson, open the map in MapEditor
and the script in SciTE editor. Once you have looked at both and read the lesson, then press the
Run Blitzkrieg button on the MapEditor toolbar (top right) to see the script execute.

Each of the first five lessons build on the previous one so that the map and script can be seen
developing. The last two lessons are separate and cover topics which often come up in BKP
Forum questions.

These lessons assume that you have downloaded the Blitzkrieg SciTE Editor. As it is very helpful,
free and not very big to down load from BKP downloads page there really is no reason not to
use it. It w on’t w rite the script for you, it w on’t find your m istakes or tell you w hen a script
w on’t run, but it is very helpful w hen w riting and checking scripts. So download it now!

Blitzkrieg SciTE Editor

Note: when using the SciTE Editor you must give the filename a .lua suffix otherwise it will be
saved as .xml.

http://bkportal.com/default.asp?content=downloads&downloadID=286

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 5

Basic Principles

The script is written as a .lua file. This is linked to the map in the MapEditor using the button
that looks like a spanner on a letter A.

The script contains a series of instructions, called functions, which make things happen when
the map is run. Functions can be very simple, making just one thing happen at a specified time,
or more complex, testing a condition and then making different things happen depending on the
outcome.

In order for functions to interact with the map units, squads and buildings must be given a
ScriptID in the map editor. With the Objects tab selected, double click on a unit to call up the
unit Properties window then double click on the ScriptID box and type in an ID, then close the
Properties window.

Tip: Make a note of which units have which ScriptID. Some mapmakers include the key to their
numbering at the start of their script (see Inserting Notes).

Tip: It is often helpful to give the player’s units and the AI’s units clearly different ScriptID
numbers, e.g.: 100s and 200s).

Many functions make use of ScriptAreas. These are defined in the MapEditor using the Map
Tools tab: select the Script Area Tool and drag the cursor over part of the map to define an area,
and then type in the name of the area. When writing the script you must use the name of the
ScriptArea exactly as it is typed in the MapEditor (case and space sensitive).

Tip: Give your ScriptAreas distinct and meaningful names so that you do not mix them up in the
script (Farm and Town NOT area1 and area2).

Lua Language
The syntax for Lua is simple and consistent and must be followed exactly. Any spelling, spacing
or punctuation mistake will result in the script not running or failing to function correctly. The
majority of script problems are typing and syntax errors.

The following words have special meanings in Lua and are known as keywords:

and break do else elseif
if end false for function
in local nil not or
repeat return then true until while

It does not matter what you think these words m ean in the “real w orld”, in Lua they have fixed
uses, hardwired into the language, and they can only be used in that way. The use of some of
them will be explained in these lessons. By convention I use these keywords in lowercase.

Note: A list of Blitzkrieg-specific functions can be found in Appendix A

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 6

There are also some Blitzkrieg keywords, like >RunScript<, >LandReinforcement<, >Win< and
>Loose<. These have to be written with capital and lowercase letters in exactly the right places.
Calvin’s guide is the dictionary for how to write these correctly.

Tip: if you use the Blitzkrieg SciTE editor then all keywords will appear in blue with a pale blue
background when they have been typed correctly.

The names of things which the scriptwriter defines are called names. These can have any
numbers and letters in them but must not start with a number. By convention I start names
with a capital letter. For example, in Lesson1 I write
function MoveCar()
 where >function< is a keyword and >MoveCar< is a name.

 Tip: if you use the Blitzkrieg SciTE editor then names will appear in black type

Once a name has been defined as a function it can be called later in the script, but when it is
used again as a string it must be put in quotation marks. For example in Lesson1 I go on to write

RunScript(“M oveCar”, 3000)
where >RunScript< is a Blitzkrieg keyw ord and >”M oveCar”< is a string w hich refers to a function
which I have already named elsewhere in the script.

It is absolutely essential that the strings be typed exactly as they occur in the function name or
else the script will not recognize them. For that reason it is often best to copy and paste names
and strings so that typing errors do not creep in. When using the quotation marks there must
not be any space between the mark and the beginning or end of the string.

Tip: if you use the Blitzkrieg SciTE editor then strings will appear in purple text when the
quotation marks are in the right places. If you see purple background it means that one set of
quote marks is missing. Note that SciTE editor does not check that you have typed the string
correctly!

Functions and keywords are qualified by parameters. To understand parameters think of the
function or keyw ord as som eone shouting “Do!” at you. This does not have any m eaning until
you have be told something else such as Do What, Do It When, Do It How Often: these qualifying
terms are the parameters for the function Do.

In Lua parameters are always specified in pairs of brackets. In the example

RunScript(“M oveCar”, 3000)
the keyword >RunScript< needs to know which script to run and when, these two parameters
are then defined inside the brackets as run the string >”M oveCar” < and the value 3000 (this is
further explained in the lesson below).

Tip: if you use the Blitzkrieg SciTE editor then values will be shown in pale blue type.

Where more than one parameter is given the strings or values are separated by a single comma.
This is very important and the script will not run if the comma is missing.

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 7

Some keywords and functions are not defined by any parameter, that is to say they are self-
explanatory for the script and do not need to be qualified by anything such as what, where,
when or how often. Where a function or keyword has no parameters the brackets are left
empty, but the brackets must still be used. Common examples include >Suicide()< and the
empty brackets after a function name. Missing an empty bracket is a very common reason for
a script not to run.

Indentations are commonly used by scriptwriters but are not necessary and do not effect the
script. They are a very helpful way of organizing things and I will use my own approach in the
examples. Other scriptwriters have their own approaches.

By convention every line of script ends with a semicolon (except those where a keyword will
operate on the following line as well – covered in Lesson3 below).

Notes are sometimes included in scripts to help the scriptwriter keep track of things or to show
others what is going on. A note is started and finished by at least two (2) dashes: -- NOTE --.
A note is not read by the script. Therefore putting two dashes at the start and end of a line can
effectively disable that line. This can be useful during testing.

Tip: if you use the Blitzkrieg SciTE editor then notes will appear in green text.

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 8

Lesson 1 – Writing a function and making it run

This lesson will make one unit move from its starting position to a defined point

Lesson1 Map

There is a car with Script ID >100< (double lick on unit to see ID) and building which the car will
drive to.

Lesson1.lua Script

function MoveCar()
 Cmd(0, 100, 916, 1516);
 Suicide();
end;

function Init()
 RunScript("MoveCar", 3000);
end;

NOTE: the executable scripts are packed as .lua files and you can copy and paste from them to
create you own scripts. Never try to write scripts in Word which embeds text codes which will
stop a lua file from working.

Explanation

function MoveCar()
establishes a function named >MoveCar< which can be called by the script

Cmd(0, 100, 916, 1516);
gives the order Move (0) to the unit (ID 100), to go to position x,y, (916 East, 1516 North)

Suicide();
Tells the script not to keep running this function

end;
closes an active part of the script, in this case >function MoveCar<

function Init()
this is the START function, every script must have one function Init or else it cannot get going

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 9

RunScript("MoveCar", 3000);
does what it says! It runs the script called >MoveCar< (do not forget the quote marks) and says
when it should run (3000 milliseconds which is 3 seconds after the game starts)
end;
closes an active part of the script, in this case >function Init<

Note: a list of the different Cm d codes and how to use them is in Calvin’s guide.

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 10

Lesson 2 – Adding a second function with multiple commands

This lesson will make a second unit perform a series of moves at a different time from the first
unit.

Lesson2 Map

There is a car with ScriptID >100<, a truck with ScriptID >101<, and there is a tree and a
monument which the truck will drive around on its way to the building.

Lesson1.lua Script

function MoveCar()
 Cmd(0, 100, 916, 1516);
 Suicide();
end;

function MoveTruck()
 Cmd(0, 101, 1583, 223);
 QCmd(0, 101, 1890, 1570);
 QCmd(0, 101, 1100, 1890);
 Suicide();
end;

function Init()
 RunScript("MoveCar", 3000);
 RunScript("MoveTruck", 7000);
end;

Explanation

function MoveCar()
 Cmd(0, 100, 916, 1516);
 Suicide();
end;

function MoveTruck()
a new function defined just like the first but with a new name
 Cmd(0, 101, 1583, 223);
the order Move (0) is the same as for the car but the ScriptID of the truck is different (101) as
are the coordinates
 QCmd(0, 101, 1890, 1570);
QCmd is just like Cmd except that it happens after the pervious command has run. This
command relates to the same truck (101) but now sends it to a second set of coordinates

QCmd(0, 101, 1100, 1890);
 Suicide();

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 11

end;

function Init()
 RunScript("MoveCar", 3000);
 RunScript("MoveTruck", 7000);
the instruction to run the new function is added to the start (Init) function but this time it runs 7
seconds after the game begins
end;

Note
The second function could also be started in the first one as shown below. This is often used
when it is known that the second function will not start before the first. It has the benefit of not
running lots of scripts at the same time (using processor power) but only starting them when
they are needed.

.lua Script

function MoveCar()
 Cmd(0, 100, 916, 1516);

RunScript("MoveTruck", 4000);
 Suicide();
end;

function MoveTruck()
 Cmd(0, 101, 1583, 223);
 QCmd(0, 101, 1890, 1570);
 QCmd(0, 101, 1100, 1890);
 Suicide();
end;

function Init()
 RunScript("MoveCar", 3000);
end;

Explanation

function MoveCar()
 Cmd(0, 100, 916, 1516);

RunScript("MoveTruck", 4000);
the second function is now being called here. To make the truck move 7 seconds after the game
starts we need to change the time parameter to 4000 because >function MoveCar< already
starts 3 seconds into the game
 Suicide();
end;

function MoveTruck()
 Cmd(0, 101, 1583, 223);

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 12

 QCmd(0, 101, 1890, 1570);
QCmd(0, 101, 1100, 1890);

 Suicide();
end;

function Init()
 RunScript("MoveCar", 3000);
the run command for >MoveTruck< can now be removed from the Init function
end;

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 13

Lesson 3 – Testing a Condition

This lesson will test to see if a condition has been met and then trigger a new action in response.
This is a very useful and commonly used device in Blitzkrieg maps.

 Lesson3 Map

This is the Lesson2 map with a ScriptArea called >Farm< marked around the building and two
squads of reinforcements with the ScriptIDs of >103< and >104<. These belong to
reinforcement group >103<. In MapEditor click on the Reinforcement Groups tab to see that
the group >103< contains two sets of ScriptIDs. This is necessary as we will order the two squads
to do different things, and so the will need different IDs. The building now has a ScriptID >10<

Lesson3.lua Script

function MoveCar()
 Cmd(0, 100, 916, 1516);
 RunScript("MoveTruck", 4000);
 Suicide();
end;

function MoveTruck()
 Cmd(0, 101, 1583, 223);
 QCmd(0, 101, 1890, 1570);
 QCmd(0, 101, 1100, 1890);
 Suicide();
end;

function FarmCheck()
 if GetNUnitsInArea(0, "Farm") == 2 then
 RunScript("SquadArrive", 1000);
 Suicide();
end;
end;

function SquadArrive()
 LandReinforcement(103);
 RunScript("SquadMove", 2000);
 Suicide();
end;

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 14

function SquadMove()
 Cmd(0, 103, 1530, 1320);
 Cmd(6, 104, 10);
 Suicide();
end;

function Init()
 RunScript("MoveCar", 3000);
 RunScript("FarmCheck", 2000);
end;

Explanation

Only the new script elements will be shown from now on.

function FarmCheck()
 if GetNUnitsInArea(0, "Farm") == 2 then
>if < is the keyword which tests something against a condition and returns one of two possible
answers: True or False). In this case the thing tested is the number of units in an area:
>GetNUnitInArea< w hich is qualified by saying w hich units (>0<, that is the player’s units) and by
specifying which area(>”Farm ”<, do not forget the quote m arks). The condition is >==2< w hich
is to say does the number of units in the area equal 2? (see the note at the end of this lesson
regarding symbols used). >then< is the keyword which defines what happens if the answer to
the test is True. As >then< operates on the next line of text there is no semicolon.
 RunScript("SquadArrive", 1000);
the consequence of the test being True is that another function (>SquadArrive<) is run. If the
answer is False then nothing happens but the script keeps running
 Suicide();
end;
this end finishes the >if<, as a rule you need one >end< for every >if< plus one for the function
end;
this end finishes the function

function SquadArrive()
 LandReinforcement(103);
this calls the reinforcement group >103< onto the map
 RunScript("SquadMove", 2000);
 Suicide();
end;

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 15

function SquadMove()

Cmd(0, 103, 1530, 1320);
this is a command for one unit (103) to move (0), to a set of coordinates (1530, 1320)
 Cmd(6, 104, 10);
this is a command for the other unit (104) to enter (6) a building (10)
 Suicide();
end;

function Init()
 RunScript("MoveCar", 3000);
 RunScript("FarmCheck", 2000);
this runs the function >FarmCheck< two seconds after the game starts. Because that function is
conditional, nothing will happen until the condition is met
end;

Tip: if you use the Blitzkrieg SciTE editor it will place a dash mark to the left of any line which
requires an >end<. I place all the ends to the left to make it easier to check that there is the
same number of ends below as dashes above!

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 16

Note
In conditional functions the following symbols are recognized:
a == b a equals b
a > b a is greater than b
a < b a is less than b
a >= b a is greater than or equal to b
a <= b a is less than or equal to b
a ~= b a does not equal b

Note – A Helpful Chunk
The following script chunk can be found on all my scripts because it helps with testing:

function DebugView
 Password("Panzerklein");
 DisplayTrace("any text you like");
 ShowActiveScripts();
 -- God(0, 2);
 Suicide();
end;

function Init()
 Runscript(“DebugView ”, 1000);
end;

Explanation

function DebugView
 Password("Panzerklein");

this allows other testing functions to work.

DisplayTrace("any text you like");
shows an in-game message of whatever is inside the quote marks. It is used here because this
function will run from the start of the mission so therefore if the message does not appear you
will know the script is not running
 ShowActiveScripts();
in console mode during the game you can see which script is running. To activate console mode
while Blitzkrieg is running press the Tab key

-- God(0, 2);
this is a cheat code. The parameters >0< applies it to the player and >2< specifies that their
forces both can kill with one hit and cannot be killed themselves.
This requires Password to work. The two dashes mean that is currently a note and will be

NOTE: if you are running Blitzkrieg with the Stalingrad ailogic.dll file (that corrects units having
the ability to fire through buildings) then you must use the following command:

Passw ord(“w w w .dtf.ru”)

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 17

ignored by the script. To make it operate (for testing) just remove the two dashes and save the
file.
Suicide();
end;

function Init()
 Runscript(“DebugView ”, 1000);
end;
DebugView must be started from the Init function just like any other function

N ote: w hen using DisplayTrace the m essage to be show n m ust be inside double quote m arks (“).
Therefore you cannot include double quote marks in the message. You can, however, use single
quote m arks (‘).

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 18

Lesson 4 – Using Objectives

This lesson covers setting objectives and using Variables.

Objectives are the triggered to appear by the script but the text for the objective and the placing
of the objective arrows on the minimap is governed by the Resource Editor. How to write and
save objectives is covered elsewhere, this lesson will just look at triggering Objective and
Objective Complete messages.

Variables are data which is saved by the game for use later. In this lesson we will use Global
Variables, inform ation on other sorts is contained in Calvin’s Guide.

Lesson4 Map

This is based on Lesson3 map with some AI enemy troops (Player 1) in a trench, and a new
ScriptArea called >Trench<.

Lesson4 .lua Script

In this script I have indicated the additions by putting in a note (--NEW--) against whole
functions or individual lines.

function DebugView() -- NEW --
 Password("Panzerklein");
 DisplayTrace("Amazing! This really works");
 ShowActiveScripts();
 --God(0, 2);
 Suicide();
end;

function MoveCar()
 Cmd(0, 100, 916, 1516);
 RunScript("MoveTruck", 4000);
 Suicide();
end;

function MoveTruck()
 Cmd(0, 101, 1583, 223);
 QCmd(0, 101, 1890, 1570);
 QCmd(0, 101, 1100, 1890);
 RunScript("ReavealObjective0", 10000); -- NEW --
 Suicide();
end;

function ReavealObjective0() -- NEW --

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 19

 ObjectiveChanged(0, 0);
 DisplayTrace("Off we go");

RunScript("Objective0Check", 2000); -- NEW -- RunScript("Objective0Complete",
3000); -- NEW --

 Suicide()
end;

function FarmCheck()
 if GetNUnitsInArea(0, "Farm") == 2 then
 RunScript("SquadArrive", 1000);
 Suicide();
end;
end;

function SquadArrive()
 LandReinforcement(103);
 RunScript("SquadMove", 2000);
 Suicide();
end;

function SquadMove()
 Cmd(3, 103, 2530, 2850);
 Cmd(6, 104, 10);
 Suicide();
end;

function Objective0Check() -- NEW --
 if GetNScriptUnitsInArea(130, "Trench") >=1 then
 SetIGlobalVar("Mission0", 1);
 Suicide();
end;
end;

function Objective0Complete() -- NEW --
 if GetIGlobalVar("Mission0", 0) == 1 then
 ObjectiveChanged(0, 1);
 Suicide()
end;
end;

function Init()
 RunScript("DebugView", 1000);
 RunScript("MoveCar", 3000);
 RunScript("FarmCheck", 2000);
end;

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 20

Explanation

function ReavealObjective0() -- NEW --
 ObjectiveChanged(0, 0);
the parameters specify which objective is changed (0), and what the change is, in this case
reveal (0)
 DisplayTrace("Off we go");
just a message, this could be omitted
 RunScript("Objective0Check", 2000); -- NEW –
runs the test which must be met for the objective to complete
 RunScript("Objective0Complete", 3000); -- NEW –
starts the function which will display the Objective Complete message
 Suicide()
end;

function Objective0Check() -- NEW --
 if GetNScriptUnitsInArea(130, "Trench") >=1 then
different from GetNUnitsInArea as it tests whether any members of a specific unit (ID >130<) are
in a given ScriptArea (Trench)
 SetIGlobalVar("Mission0", 1);
when the condition is met this keyword creates and saves a variable with a name and value as
specified in the param eters, in this case the nam e >”M ission0”< and value >1<. The value can
be any whole number.
 Suicide();
end;
end;
two ends because this function contains an >if<

function Objective0Complete() -- NEW --
 if GetIGlobalVar("Mission0", 0) == 1 then
this keyword recalls the parameters previously saved by >SetIGlobalVar<. The first parameter is
the name of the save global variable and the second parameter is always zero (0). So in total
this line calls up the value of the variable w e have called >”M ission0”< and tests w hether that
value equals >1<. If the answer is True then the next line of the script will execute. If the answer
is False nothing happens except that the script keeps running
 ObjectiveChanged(0, 1);
The parameters >(0, 1)< mean that objective number >0< is complete (1)
 Suicide()
end;
end;
two ends because this function contains an >if<

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 21

Note
It is not necessary to use Global Variables to trigger Objective Complete messages but they are
often used later in the script to check that all the objectives have been completed (as we shall
see).

The alternative way to complete the objective would just require one function like this:

function Objective0Check() -- NEW --
 if GetNScriptUnitsInArea(130, "Trench") >=1 then
 ObjectiveChanged(0, 1);
 Suicide();
end;
end;

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 22

Lesson 5 – Putting It All Together

This lesson puts the previous lessons into action with conditions for objectives, different sorts of
test and multiple reinforcements. It demonstrates the use of if… else and if… elseif. It adds Win
and Loose conditions and recalls Global Variables to test whether conditions have been met. It
could be the basis for many missions with the different tests being used repeatedly with
different ScriptAreas and different ScriptIDs.

Lesson5 Map

This is based on Lesson4 map

Lesson5 .lua Script

function DebugView()
 Password("Panzerklein");
 DisplayTrace("Lua really isn't scary any more!");
 ShowActiveScripts();
 --God(0, 2);
 Suicide();
end;

function MoveCar()
 Cmd(0, 100, 916, 1516);
 RunScript("MoveTruck", 4000);
 Suicide();
end;

function MoveTruck()
 Cmd(0, 101, 1583, 223);
 QCmd(0, 101, 1890, 1570);
 QCmd(0, 101, 1100, 1890);
 RunScript("ReavealObjective0", 10000);
 Suicide();
end;

function ReavealObjective0()
 ObjectiveChanged(0, 0);
 DisplayTrace("Off we go");
 RunScript("Objective0Check", 2000);
 RunScript("Objective0Complete", 3000);
 Suicide()
end;

function FarmCheck()
 if GetNUnitsInArea(0, "Farm") == 2 then

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 23

 RunScript("SquadArrive", 1000);
 Suicide();
end;
end;

function SquadArrive()
 LandReinforcement(103);
 RunScript("SquadMove", 2000);
 Suicide();
end;

function SquadMove()
 Cmd(3, 103, 2530, 2850);
 Cmd(6, 104, 10);
 Suicide();
end;

function Objective0Check()
 if GetNScriptUnitsInArea(103, "Trench") >= 1 then
 SetIGlobalVar("Mission0", 1);
 Suicide();
end;
end;

function Objective0Complete()
 if GetIGlobalVar("Mission0", 0) == 1 then
 ObjectiveChanged(0, 1);
 RunScript("Objective1", 2000); -- NEW --
 Suicide();
end;
end;

function Objective1() -- NEW --
 ObjectiveChanged(1, 0);
 RunScript("Objective1Complete", 3000);
 DisplayTrace("Clear out all the Americans from this area");
 LandReinforcement(105);
 Cmd(3, 105,2335, 3015);
 RunScript("HeavyArmourDeploy", 30000);
 Suicide();
end;

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 24

function Objective1Complete() -- NEW --
 if GetNUnitsInParty(1) <= 3 then
 ObjectiveChanged(1, 1);
 SetIGlobalVar("Mission1", 1);
 Suicide();
end;
end;

function HeavyArmourDeploy() -- NEW --
 LandReinforcement(106);
 RunScript("HeavyArmourMove", 2000);
 Suicide();
end;

function HeavyArmourMove() -- NEW --
 if GetNUnitsInArea(1, "Trench") > 0 then
 Cmd(3, 106, GetScriptAreaParam s(“Trench”));
 else Cmd(3, 106, 393, 3777);
 Suicide();
end;
end;

function USCounterattack() -- NEW --
 if GetNUnitsInArea(1, "Trench") <= 20 then
 RunScript("USTanks", 3000);
 Suicide();
end;
end;

function USTanks() -- NEW --
 LandReinforcement(200);
 Suicide();
end;

function WinLoose() -- NEW --
 if GetIGlobalVar("Mission0", 0) * GetIGlobalVar("Mission1", 0) == 1 then
 Win(0);
 elseif GetNUnitsInScriptGroup(103) + GetNUnitsInScriptGroup(105)
+GetNUnitsInScriptGroup(106) == 0 and
 GetIGlobalVar("Mission0", 0) == 1 then
 Loose(0);
 Suicide();
end;
end;

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 25

function Init()
 RunScript("DebugView", 1000);
 RunScript("MoveCar", 3000);
 RunScript("FarmCheck", 2000);
 RunScript("USCounterattack", 2000); --NEW--
 RunScript("WinLoose", 3000); --NEW--
end;

Explanation

function Objective1() -- NEW --
 ObjectiveChanged(1, 0);
as with >Objective0< explained in Lesson4, this triggers the objective message and arrow for
objective 1
 RunScript("Objective1Complete", 3000);
start the function (in 3 seconds) which will test whether objective is completed
 DisplayTrace("Clear out all the Americans from this area");
just a message, could be omitted as the objective message will be displayed in finished game
 LandReinforcement(105);
triggers the arrival of light AFVs (ScriptGroup>105<)
 Cmd(3, 105, 2335, 3015);
moves the reinforcements (>105<) to new x,y coordinates
 RunScript("HeavyArmourDeploy", 30000);
starts the function >HeavyArmourDeploy< after 30 seconds (>30000< milliseconds)
 Suicide();
end;

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 26

function Objective1Complete() -- NEW --
 if GetNUnitsInParty(1) <= 3 then
tests w hether the num ber of units in the AI enem y’s side (>1<) is less than or equal to 3
 ObjectiveChanged(1, 1);
if the answer to the test is True then objective >1< is complete (>1<)
 SetIGlobalVar("Mission1", 1);
when the condition is met this keyword creates and saves a variable with a name and value as
specified in the parameters, in this case the nam e >”M ission1”< and value >1<
 Suicide();
end;
end;
two ends because this function contains an >if<

function HeavyArmourDeploy() -- NEW --
 LandReinforcement(106);
triggers the arrival of tanks (ScriptGroup>106<)
 RunScript("HeavyArmourMove", 2000);
starts the function (in 2 seconds) which will choose where the tanks go
 Suicide();
end;

function HeavyArmourMove() -- NEW --
 if GetNUnitsInArea(1, "Trench") > 0 then
tests w hether the num ber of units in the AI enem y’s side (>1<) in the area >Trench< is greater
than 0
 Cmd(3, 106, GetScriptAreaParam s(“Trench”));
if the answer to the test is True then the tanks (>106<) move aggressively (>3<) to the
coordinates of the ScriptArea >Trench<
 else Cmd(3, 106, 393, 3777);
>else< gives the instruction if the answer to the test is False (often this isn’t given and the result
of a False test is do nothing), in this case the tanks (>106<) move aggressively (>3<) to new x,y
coordinates (>393, 3777<)
 Suicide();
end;
end;
two ends because this function contains an >if<

function USCounterattack() -- NEW --
 if GetNUnitsInArea(1, "Trench") <= 20 then
 RunScript("USTanks", 3000);
 Suicide();
end;
end;
two ends because this function contains an >if<

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 27

function USTanks() -- NEW --
 LandReinforcement(200);
 Suicide();
end;

function WinLoose() -- NEW –
 if GetIGlobalVar("Mission0", 0) * GetIGlobalVar("Mission1", 0) == 1 then
recalls the Global Variables >Mission0< and >Mission1< (which are set to 1 when the each of the
objectives are completed) and tests whether they are both >1< (one multiplied by one equals
one)
 Win(0);
if the answer to this first test is True then the player (>0<) wins and the You Won message is
displayed
 elseif GetNUnitsInScriptGroup(103) + GetNUnitsInScriptGroup(105)
+GetNUnitsInScriptGroup(106) == 0 and
if the answer to the first test is False then >elseif< performs a second test, in this case counting
w hether certain of the player’s units have been killed. The >and< links this test w ith another
and both must be True for the consequence part of the script to run
 GetIGlobalVar("Mission0", 0) == 1 then
tests whether the first objective is complete. This is needed because >function WinLoose()<
runs throughout the gam e (started by >function Init<) and the player’s reinforcement do not
arrive until after the first objective is com plete. Therefore, if w e didn’t have this additional test
then this function would run 3 seconds after the game begins, find that the number of player
reinforcements equals 0 and then run the next line
 Loose(0);
if the answer to the second test is True then the player looses and the You Lost message is
displayed
 Suicide();
end;
end;
two ends because this function contains an >if<, but only two because >elseif< does not count
as another logical function, it is only the outcome of a False answer to the >if< test

function Init()
 RunScript("DebugView", 1000);
 RunScript("MoveCar", 3000);
 RunScript("FarmCheck", 2000);
 RunScript("USCounterattack", 2000); --NEW--
 RunScript("WinLoose", 3000); --NEW--
end;

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 28

Note: the WinLoose function could also be written as follows:

function WinLoose() -- NEW --
 if GetIGlobalVar("Mission0", 0) * GetIGlobalVar("Mission1", 0) == 1 then
 Win(0);
 if GetNUnitsInScriptGroup(103) + GetNUnitsInScriptGroup(105)
+GetNUnitsInScriptGroup(106) == 0 and
 GetIGlobalVar("Mission0", 0) == 1 then
 Loose(0);
 Suicide();
end;
end;
end;
three ends: one for each >if< and one for the function

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 29

LessonPlanes

This lesson will demonstrate how to use the script to call aircraft in response to a map event.

LessonPlanes Map

There is a defensive position surrounded by a MapArea called >Bunker<. Aviation has been
allocated to the player side in Map Editor using the Edit Units Creation Information button (it
looks like… w ell I’m not sure… a sort of upside-down mushroom).

Click the button to call up the menu, then click on the >+< next to >Player[0]< then click the >+<
next to >Aviation<. You can then select which aircraft (and how many) will make up each type
of aviation call. The most important thing to select is >Appear points<: you must set this to be
able to use aviation. Double click the line and then select >Add<. You can now enter the x,y
coordinates for the player’s aircraft to appear. Notice that these are given as VIS tiles, not Script
points. The VIS tile coordinates are displayed in the centre at the bottom of the screen in
MapEditor, right next to where the Script point coordinates ate given. Once you have set the
appear point, close the menus.

LessonPlanes.lua Script

function DebugView()
 Password("Panzerklein");
 DisplayTrace("Here come the planes");
 ShowActiveScripts();
 --God(0, 2);
 Suicide();
end;

function PlaneTrigger()
 if GetNUnitsInArea(1, "Bunker") >= 1 then
 Cmd(36, 999, 0, 1100, 2070);
-- Cmd(36, 999, 0, GetScriptAreaParams("Bunker"));
 Suicide();
end;
end;

function Init()
 RunScript("DebugView", 1000);
 RunScript("PlaneTrigger", 3000);
end;

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 30

Explanation

function PlaneTrigger()
 if GetNUnitsInArea(1, "Bunker") >= 1 then
a conditional test which will trigger the plane call when the number of AI enemy units (player 1)
in the ScripArea >Bunker< is greater than or equal to 1.
 Cmd(36, 999, 0, 1100, 2070);
calls the aircraft. >36< is the code for Ground Attack aircraft (see Calvin for the full list), >999< is
a temporary ID for the aircraft (it could be any number but by convention mapmakers tend to
reserve 99, 999 or 9999 for aircraft), >0< is the player’s side, >1100, 2070< is the x,y coordinate
for the plane to go to (given in Script points)
-- Cmd(36, 999, 0, GetScriptAreaParams("Bunker"));
this line is not being used because it has two dashes at the beginning. It is an alternative way to
call the aircraft. Instead of giving the x,y coordinates the script will get the coordinates of the
ScriptArea >Bunker< automatically
 Suicide();
end;
end;
two ends: one for the >if< and one for the function

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 31

LessonPatrol

This lesson will demonstrate how to create a patrol route. In this example only one unit is in the
patrol, but it could include any number. If the patrolling unit(s) has an aggressive capacity, then
it will engage any enemy units it encounters and then continue on its route (if it survives).

LessonPlanes Map

There is an armored car with the ScriptID >100< in a ScriptArea called >Starting Point<.

LessonPlanes.lua Script

Note: This script was originally provided by Wespex in answer to a question on the Blitzkrieg
Portal forums, together with an alternative means of achieving the same end.

function PatrolArea()
 if GetNScriptUnitsInArea(100, "Starting Point") > 0 then
 Cmd (3, 100, 765, 681);
 QCmd (3, 100, 288, 356);
 QCmd (3, 100, 545, 1145);
 QCmd (3, 100, 299, 1807);
 QCmd (3, 100, 1631, 1479);
 QCmd (3, 100, 1351, 647);
 RunScript("PatrolArea", 2000);
 Suicide();
end;
end;

function Init()
 RunScript("PatrolArea", 5000);
end;

http://bkpforums.com/phpBB2/viewtopic.php?t=1902
http://bkpforums.com/phpBB2/viewtopic.php?t=1902

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 32

Explanation

function PatrolArea()
 if GetNScriptUnitsInArea(100, "Starting Point") > 0 then
checks that the patrolling unit(ScriptID >100<) still exists and is at the initial position (ScriptArea
>Starting Point<)

Cmd (3, 100, 765, 681);
orders aggressive move (>3<) by unit >100< to new x,y coordinates (>765, 681<)
 QCmd (3, 100, 288, 356);
orders aggressive move (>3<) by unit >100< to new x,y coordinates once previous order is
complete (QCmd)
 QCmd (3, 100, 545, 1145);
as above
 QCmd (3, 100, 299, 1807);
as above
 QCmd (3, 100, 1631, 1479);
as above
 QCmd (3, 100, 1351, 647);
as above but as this is the last movement order the final coordinates must be inside the
ScriptArea >Starting Point<
 RunScript("PatrolArea", 2000);
repeats the whole script
 Suicide();
end;
end;
two ends: one for the >if< and one for the function

Note: A patrol can have any number of movements in each circuit simply by adding or removing
>QCmd(3, ScriptID, x, y)< lines. The important thing is that the final movement must bring the
patrolling unit back into the ScriptArea which is tested in the first line of the function.

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 33

Debugging Scripts

Debugging is the process of finding and eliminating bugs in code. In the world of programming,
the recognized steps involved in debugging are:

 Recognize that a bug exists
 Isolate the source of the bug
 Identify the cause of the bug
 Determine a fix for the bug
 Apply the fix and test it

Scripts w ill need to be debugged if they are either “broken” – that is, they do not run at all, or if
they do not behave as expected.

Broken Scripts

You will be aware that your script has been "broken" by one or more errors when any objectives
triggered by the script are not displayed in the game. It is good practise to put in a DisplayTrace
statement in the Init function to display som e text such as “Script w orking… ”. If the script is OK
this will appear straightaway. If it does not appear then you know the script is faulty. The
statement can be removed once the script is debugged or commented out.

TIP #1: when you find that your script is broken you do not have to close Blitzkrieg. You can
return to Windows with the game still running, debug and edit the script, save it and then
choose the "Restart Mission" option in Blitzkrieg to test it again.
NOTE: This will not work if your script file is inside a .pak file as these files are locked when the
editor and game are active.

TIP #2: Do not compile the map into a .pak file until it is fully complete and debugged. Any map
open in the editor that is stored inside a .pak file is saved directly to the Data folder from the
editor and could therefore easily end up being excluded from your .pak file unless you
remember to keep the contents up-to-date.

When debugging your script you should check for the following, most common, mistakes:

 Functions not terminated with an "end”; statement

 Comment lines incorrectly started using a single dash – “-“ – instead of a double-dash –
“--“

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 34

 Condition checking blocks not being terminated with their own "end;" statements.

Example

function CheckTown()
 if GetNUnitsInArea(0, "Town") == 0 then
 ObjectiveChanged(0,1);
 RunScript("Objective1", 5000);
end;

The above code would break a script because the "if GetNUnits..." block is missing its
own "end;" statement.
Every function block requires its own end; statement. Every if block requires its own
end; as well.

 Incorrect usage of case: the if command must be typed in lowercase , it should not be
entered as If

 Statements not terminated with a semi-colon – ";".
Note: this does not apply to function and if keywords.

 Text values (or strings) that have not been terminated correctly. The following, for
example, would break a script - GetUnitsInArea(0, "Town) – because the script area
name Town was not closed with quotation marks.

 Use of quotes in "DisplayTrace" statements.
Example: this code is invalid: DisplayTrace("Commander, the "Tigers" have arrived.");
because wrapping the word Tigers in quotation marks has indicated to the script
processor that the string you want to display is "Commander, the "

 Functions and checks embedded in brackets - “(“ and “)” – that do not contain the
correct number of opening or closing brackets.
This example below is incorrect:

 if (GetNScriptUnitsInArea (1, "finalattack") == 1 then

because the GetNScriptUnitsInArea function has not been terminated with a closed
bracket symbol.

 Typing Lose(); instead of Loose();. It might be tempting to write this using the correct
spelling but Loose is the correct name.

 Win() statements missing the player number.

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 35

To save time during the debugging process it is useful to know that the following do not break
scripts:

 Landing a non-existent reinforcement group
 Calling a non-existent function (using the RunScript command)

Debugging Scripts That Behave Unexpectedly

Sometimes you will find that your script does not behave exactly as expected. For example,
objectives might not be completed when you have fulfilled the requirements or reinforcement
groups may appear repeatedly. Below are some common mistakes to look for in your script:

 If you find that a particular action or event (for example, a reinforcement group keeps
appearing on the map) is repeating itself then you should check for missing Suicide();
statements. This statement tells a script to stop processing and its use is critical for
ensuring that scripts execute smoothly.

 Example

 function Init()
 RunScript(“M yCheck”, 5000);
 …
 end;

 function MyCheck()
 if GetNUnitsInArea(0, “Tow n”) > 0 then
 RunScript(Reinforcements,5000);
 end;
 end;

 function Reinforcements()
 LandReinforcement(100)
 end;

 The above code runs the MyCheck function every five seconds. This function checks
 w hether the player (side 0) has one or m ore units in the m ap area defined as “Tow n”. If
 he does then the Reinforcements function is called with the intention of calling in
 reinforcement group 100. However, in the above code, reinforcement group 100 would
 appear repeatedly w henever there are player 0 units in the “Tow n” area because the
 MyCheck function was not told to stop running after the condition was fulfilled.

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 36

 In this example, the correct code for MyCheck should read:

 function MyCheck()
 if GetNUnitsInArea(0, “Tow n”) > 0 then
 RunScript(Reinforcements,5000);
 Suicide();
 end;
 end;

 The Suicide(); statement tells the script processor to stop running the MyCheck script
 once the conditions have been met and the Reinforcements script has been called.

 “Objective Received: Unknow n Objective”
This w ill appear on your m ap if the relevant objective entry is m issing from your m ap’s
1.xml file. However, this message is perfectly normal if running your map directly from
the map editor as, in this circumstance, Blitzkrieg does not process the files in the
scenarios\custom\missions\mission name folder.

 If you are checking for units in a particular area and the checks are failing to return the
desired results then double-check that you do not have two or more map areas defined
with the same name.

 If aviation units do not appear after being called with one of the Cmd functions (e.g.
example here) then check that the aviation was not previously disabled elsewhere in
the script via the DisableAviation() function.

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 37

Appendix A – Blitzkrieg Function List (by Wespex)

Custom Function Input Value Return Value
AddIronMan (iScriptID) -
ChangeFormation (iScriptID, iFormation) -
ChangePlayer (iScriptID, iParty) -
ChangeWarFog (iParty) -
Cmd|GiveCommand (iAction, iScriptID, xLoc, yLoc) -
DamageObject (iScriptID, fDamage) -
DeleteReinforcement (iScriptID) -
DisableAviation (iParty, iAviationType) -
DisplayTrace (strText, params, ...) Text on screen
Draw - -
EnableAviation (iParty, iAviationType) -
FlagReinforcement (nParty) -
GetActiveShellType (iScriptID) Shell Type
GetAviationState (iPlayer) Last aviation call by player
GetFGlobalVar (strGlobalVarName, 0) strGlobalVarName & value
GetFrontDir (iScriptID) Direction unit Is facing
GetIGlobalVar (strGlobalVarName,0) strGlobalVarName & value
GetMapSize - Size of map in script points
GetNAmmo (iScriptID) ammunition levels (pri, sec)
GetNAntitankInScriptArea (strScriptAreaName) Number of anti-tank obsticals in area
GetNAPFencesInScriptArea (strScriptAreaName) Number of barb wire pieces in area
GetNFencesInScriptArea (strScriptAreaName) Number of fence pieces in area
GetNMinesInScriptArea (strScriptAreaName) Number of mines in area (at & ap)
GetNScriptUnitsInArea (iScriptID, strScriptAreaName) Number of scriptid units in area
GetNTrenchesInScriptArea (strScriptAreaName) Number of trench pieces in area
GetNUnitsInArea (iPlayer, strScriptAreaName) Number of player units in area
GetNUnitsInCircle (iPlayer, X, Y, Radius) Number of player units in co-ords
GetNUnitsInParty (iPlayer) Number of player units on map
GetNUnitsInScriptGroup (iScriptID, iPlayer) Number of scriptid units
GetNUnitsOfType (strUnitType, iPlayer) Type of infantry
GetObjCoord (iScriptID) O bject’s location
GetObjectHPs (iScriptID_Static) O bject’s hit points
GetScriptAreaParams (strScriptAreaName) Parameters of area
GetSGlobalVar (strGlobalVarName, 0) strGlobalVarName & value
GetSquadInfo (iScriptID) Squad formation
GetUnitState (iScriptID) Unit state
God (iParty, iMode) -
IsEntrenched (iScriptID) Entrenchment value of unit
IsFollowing (iScriptID) Following value of unit
IsStandGround (iScriptID) Stand ground value of unit

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 38

Custom Function Input Value Return Value
IsWarehouseConnected (iScript_StorageID) Small depot connected to main
KillScript (strScriptFunctionName) -
LandReinforcement (iReinfID) -
Loose - -
ObjectiveChanged (iObjNum, iState) Objective state
Password (strName) -
QCmd|GiveQCommand : (iAction, iScriptID, params) -
RandomFloat - Decimal between 0 and 1
RandomInt (n) Random number from 0 to n
ReserveAviationForTimes (iParty, iTime) -
RunScript (strFunctionName, iTime, iTurns) -
SetCheatDifficultyLevel (n) -
SetDifficultyLevel (n) -
SetFGlobalVar (strGlobalVarName, fVar) -
SetGameSpeed (n) -
SetIGlobalVar (strGlobalVarName, iVar) -
SetSGlobalVar (strGlobalVarName, sVar) -
ShowActiveScripts - Current scripts show in console
Suicide - -
SwitchWeather (iState) -
SwitchWeatherAutomatic (iState)
Trace (strText, params) Text in console
ViewZone (strScriptAreaName, iParam) -
Win (iParty) -

Basic Lessons in Writing Scripts for Blitzkrieg 1

Page | 39

Appendix B – Useful Links

Blitzkrieg SciTE Editor

Calvin’s Guide to Lua Program m ing

Single Player Map Tutorial by Wespex

Other Tutorials at Blitzkrieg Portal

Map Making Questions and Answers at Blitzkrieg Portal Forums

http://bkportal.com/default.asp?content=downloads&downloadID=286
http://bkportal.com/default.asp?content=downloads&downloadID=286
http://bkportal.com/default.asp?content=downloads&downloadID=2
http://bkportal.com/default.asp?content=downloads&downloadID=136
http://bkportal.com/default.asp?content=downloads&category=14
http://bkpforums.com/phpBB2/viewforum.php?f=55

